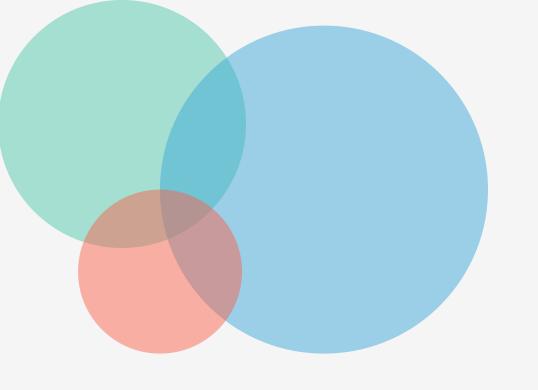
The Application of Power-walking in Phase II Cardiac Rehabilitation Program for the Post-PCI Patients

 Song Jing
 14364021

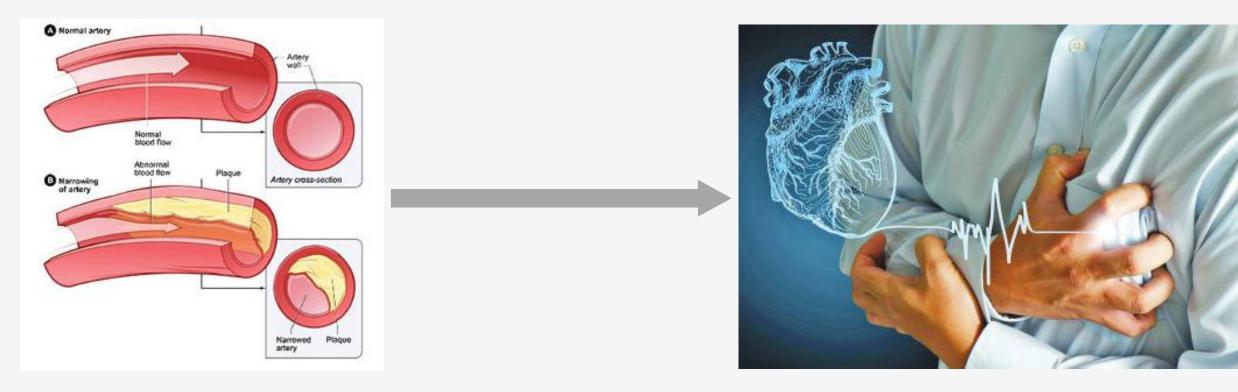
 Liu Zefan
 14364016

 Yi Lingrong
 14364002

 Huang Mengdan
 14364022


CONTENTS

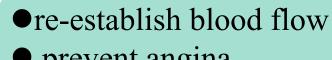
CHD & PCI


PART ONE

CHD & PCI

After which **POWER-WALKING** is applied

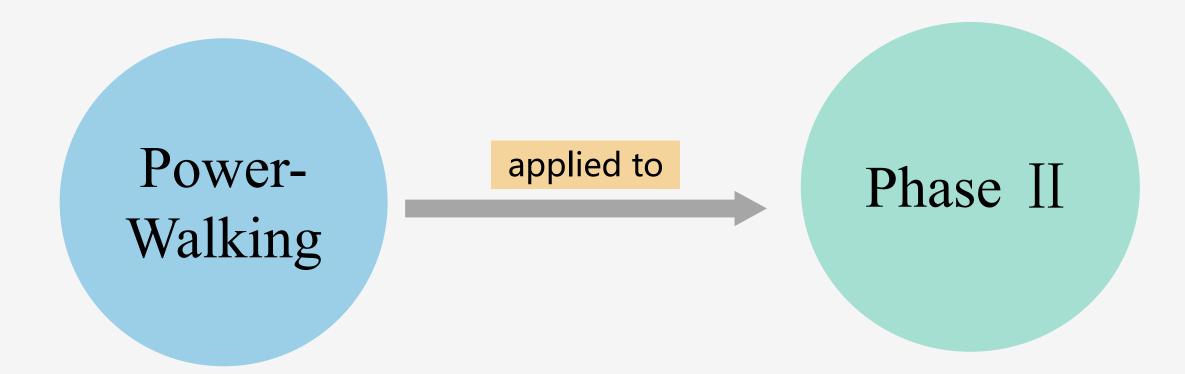
Coronary heart disease (CHD)



-Bhatia, Sujata K. (2010). Biomaterials for clinical applications (Online-Ausg. ed.). New York: Springer. p. 23. ISBN 9781441969200.

Percutaneous coronary intervention (PCI)

restore arterial blood flow to heart tissue

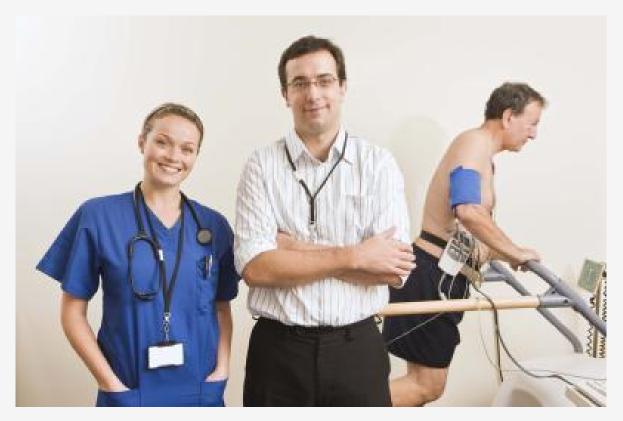

open a blocked coronary artery

prevent angina,myocardial infarctionsand death

-Oberhauser JP, Hossainy S, Rapoza RJ (2009). "Design principles and performance of bioresorbable polymeric vascular scaffolds". EuroIntervention. 5 (Suppl F): F15–22.

Rehabilitation program

(Kim, C., et al., 2012)


PART TWO

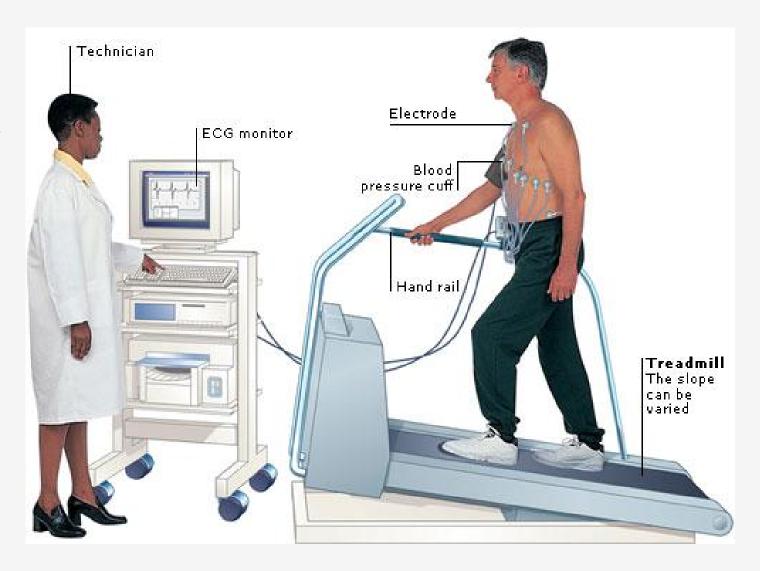
Basic Evaluation Of Cardiac Fitness For Exercise

-- Exercise Stress Test

EXERCISE STRESS TESTING

An exercise stress test is commonly conducted by health professionals to determine cardiac function of people with heart disease risk factors.

- The Bruce treadmill test, a non-invasive test
- Other similar exercise stress test protocols include Astrand, Naughton and Balke.



BRUCE PROTOCOL

- performed under the supervision of appropriately trained medical staff.
- for estimating VO₂ max.

the maximum amount of oxygen that an individual can utilize during intense or maximal exercise.

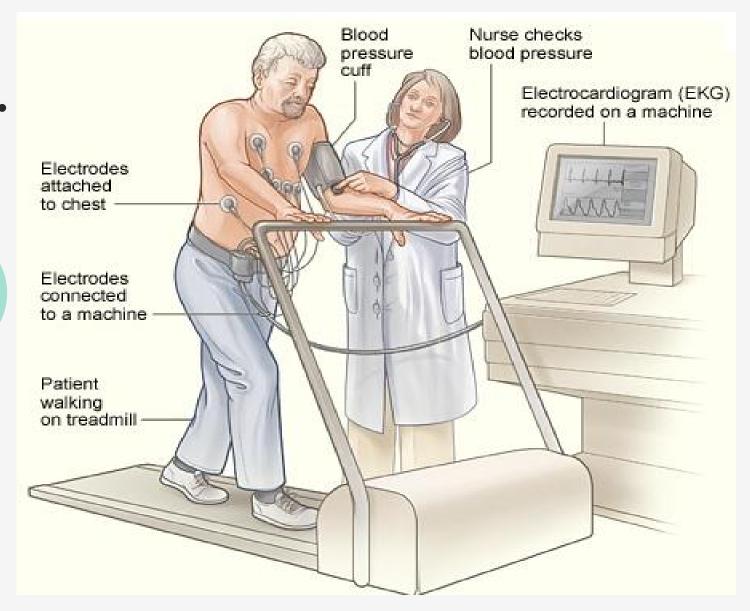
Bruce Protocol Stress Test

Stage	Speed (km/hr)	Speed (mph)	Gradient
_	-		

3minutes Marined Bruce protocol

Stage	Time	Speed	Grade	Mets
1	3 minutes	1.7mph	0%	1.7
2	3 minutes	1.7mph	5%	2.9
3	3 minutes	1.7 mph	10%	4.7
4	3 minutes	2.5 mph	12%	7.1
5	3 minutes	3.4 mph	14%	10.2
6	3 minutes	4.2 mph	16%	13.5
7	3 minutes	5.0mph	18%	17.3

28


Iris/hACs/s Бышь рв. (2002) iac Rehabilitation (IACR), 2019

PROCEDURE OF BRUCE PROTOCOL

 the leads of the ECG are placed on the chest wall


warm up

 the subject run for as long as possible on a treadmill.

Wilmore JH and Costill DL. (2005)

RESULTS OF BRUCE PROTOCOL

The length of time"T" Active and sedentary men

on the treadmill is the VO2 max = 14.8 - (1.379 × T) + (0.451 test)sq0.5€2and³çan be

Active and sedentary women

max value. VO2 max = $(4.38 \times T) - 3$.

(1) Foster et al. 1984

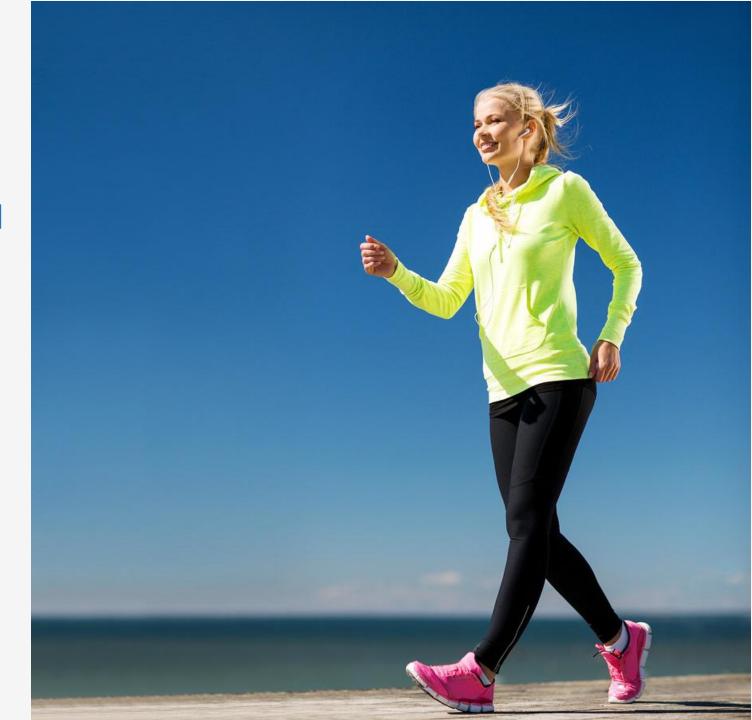
(2)Pollock et al. 1982

RESULTS OF BRUCE PROTOCOL

Bruce Protocol Norms for Men

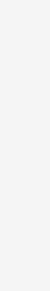
VO2 Max Norms for Men - Measured in ml/kg/min								
Age	Very Poor	Poor	Fair	Good	Excellent	Superior		
13-19	<35.0	35.0-38.3	38.4-45.1	45.2-50.9	51.0-55.9	>55.9		
20-29	<33.0	33.0-36.4	36.5-42.4	42.5-46.4	46.5-52.4	>52.4		
30-39	<31.5	31.5-35.4	35.5-40.9	41.0-44.9	45.0-49.4	>49.4		
40-49	<30.2	30.2-33.5	33.6-38.9	39.0-43.7	43.8-48.0	>48.0		
50-59	<26.1	26.1-30.9	31.0-35.7	35.8-40.9	41.0-45.3	>45.3		
60+	<20.5	20.5-26.0	26.1-32.2	32.3-36.4	36.5-44.2	>44.2		

Wilmore JH and Costill DL. (2005)



PART THREE

- Power waking
- Making exercise program
- Procedure


POWER WALKING

- A form of exercise where active upper body movement is added to the usual walking exercise.
- A fast walking exercise done at a speed of 6 to 8 km/h
- The elbow joints are bent 90 degrees
- At least one foot must be in contact with the ground at all times.

- myocardial oxygen requirements
- risk of coronary events

- peak oxygen uptake
- cardiorespiratory endurance
- aerobic capacity

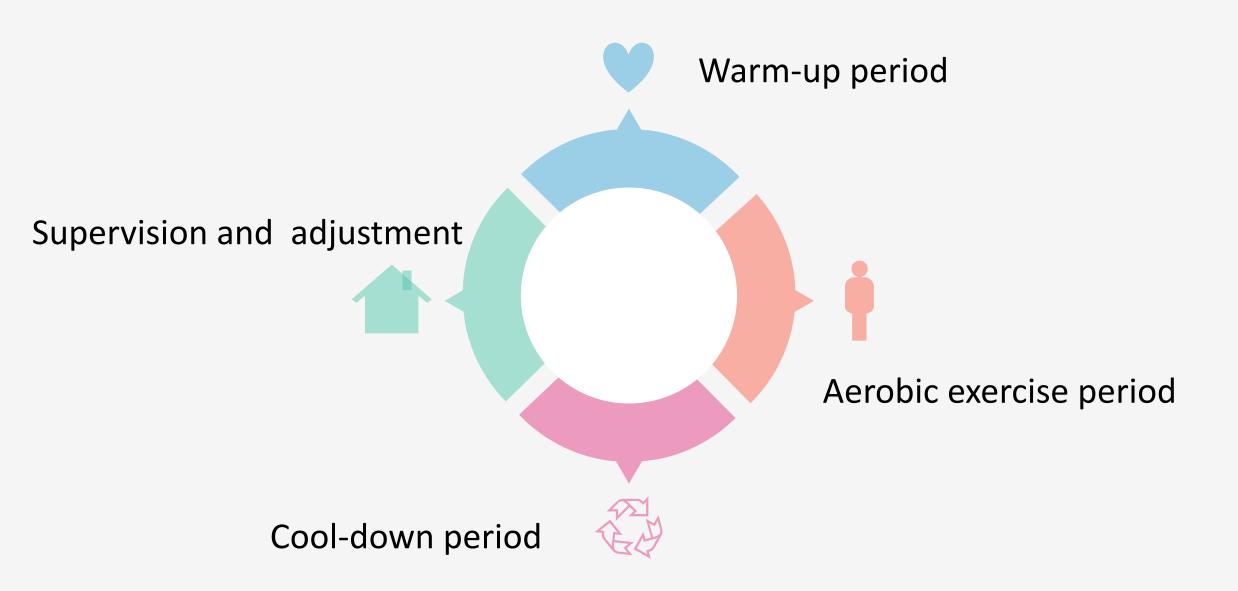
(Arthur S. Leon, 2005)

EXERCISE PROGRAM

Intensity: 60% of the target heart rate during the first 2 weeks

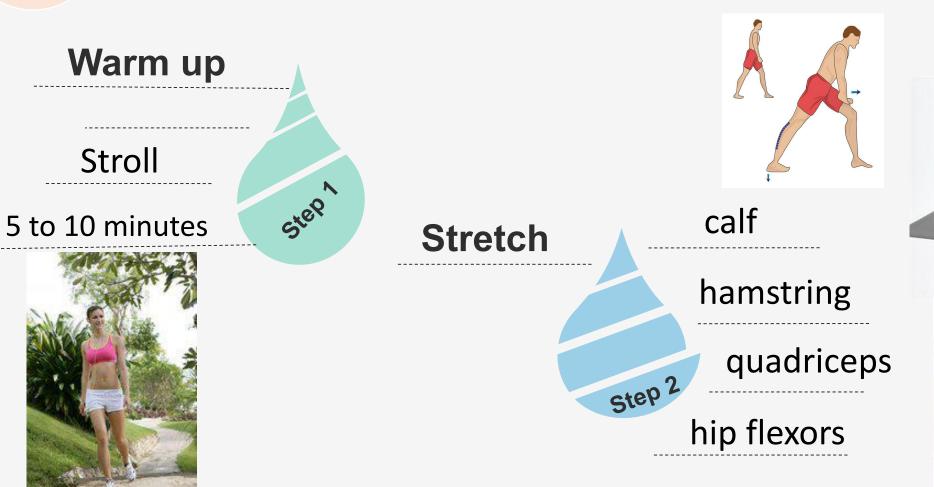
70% during 3rd and 4th weeks

85% during 5th and 6th weeks


Duration:6 weeks

Frequency:3 times a week

The target heart rate=60% to 80% of the maximum heart rate

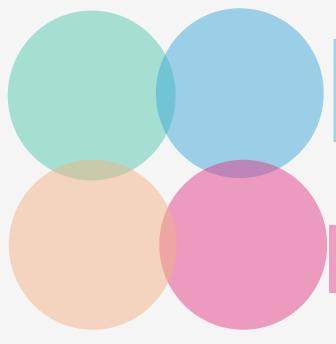

Procedure

WARM-UP PERIOD

Total body movement exercises and pay attention to heart rate.

AEROBIC EXERCISE PERIOD

Step 1


Establish a correct posture

Position your head in a neutral position and looking forward.

Open your mouth slightly.

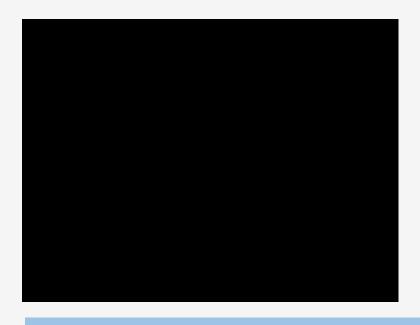
Keep your shoulders relaxed.

Place your arms in a 90-degree angle.



Point your toes and knees forward.

Straighten your front leg.


Tighten your gluteus and abdominals.

Step 2 Move correctly

Step with your heel first and then roll your weight forward.

Use a natural step length.

Swing your arms back and forth actively

Pay attention to direction, wrists and elbows.

Alternate arms and legs forward to maintain walking in a straight line.

COOL-DOWN PERIOD

Cool down

Slowing your pace and dropping your arms by your sides.

Stretch

Stretch each muscle for 20 to 30 seconds.

SUPERVISION AND ADJUSTMENT

Monitor

heart rate, rhythm and blood pressure.

Adjust

according to the patients' response.

REFERENCES

- [1]. Conraads, V.M., et al., Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. International Journal of Cardiology, 2015. 179: p. 203-210.
- [2]. Association of Cardiovascular and Pulmonary Rehabilitation (Subcommittee on Physical Activity), in Collaboration With the American Prevention) and the Council on Nutrition, Physical Activity, and Metabolism Clinical Cardiology (Subcommittee on Exercise, Cardiac Rehabilitation, and An American Heart Association Scientific Statement From the Council on Cardiac Rehabilitation and Secondary Prevention of Coronary Heart Disease.
- [3]. Cardiac Rehabilitation Guidelines 2013.
- [4]. Jelinek, H.F., et al., Cardiac rehabilitation outcomes following a 6-week program of PCI and CABG Patients. Frontiers in Physiology, 2013.
- [5]. Herdy, A.H., et al., Cardiopulmonary Exercise Test: Fundamentals, Applicability and Interpretation. Arquivos Brasileiros de Cardiologia.
- [6]. Guazzi, M., et al., Clinical Recommendations for Cardiopulmonary Exercise Testing Data Assessment in Specific Patient Populations. Circulation, 2012. 126(18): p. 2261-2274.
- [7]. Warburton, D.E.R., et al., Effectiveness of High-Intensity Interval Training for the Rehabilitation of Patients With Coronary Artery Disease. The American Journal of Cardiology, 2005. 95(9): p. 1080-1084.
- [8]. Clinical Cardiology: New Frontiers Exercise as Cardiovascular Therapy.
- [9]. Jukić, A., et al., Impact of Percutaneous Coronary Intervention on Exercise-Induced Repolarization Changes in Patients With Stable Coronary Artery Disease. The American Journal of Cardiology, 2015. 116(6): p. 853-857.
- [10]. Elliott, A.D., et al., Interval Training Versus Continuous Exercise in Patients with Coronary Artery Disease: A Meta-Analysis. Heart, Lung and Circulation, 2015. 24(2): p. 149-157.
- [11]. Haykowsky, M.J., et al., Meta-Analysis of Aerobic Interval Training on Exercise Capacity and Systolic Function in Patients With Heart Failure and Reduced Ejection Fractions. The American Journal of Cardiology, 2013. 111(10): p. 1466-1469.

REFERENCES

- [12]. Conraads, V.M., et al., Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: The SAINTEX-CAD study. International Journal of Cardiology, 2015. 179: p. 203-210.
- [13]. Kim, C., J.E. Youn and H.E. Choi, The Effect of a Self Exercise Program in Cardiac Rehabilitation for Patients with Coronary Artery Disease. Annals of Rehabilitation Medicine, 2011. 35(3): p. 381.
- [14]. Tsai, S.W., Y.W. Lin and S.K. Wu, The effect of cardiac rehabilitation on recovery of heart rate over one minute after exercise in patients with coronary artery bypass graft surgery. Clinical Rehabilitation, 2005. 19(8): p. 843-849.
- [15]. Kim, C., et al., The Effect of Power-walking in Phase 2 Cardiac Rehabilitation Program. Annals of Rehabilitation Medicine, 2012. 36(1): p. 133.
- [16]. Weber classifi cation in cardiac rehabilitation.
- [17].Wilmore JH and Costill DL. (2005) Physiology of Sport and Exercise: 3rd Edition. Champaign, IL: Human Kinetics.
- [18]. Vivian H. Heyward, Advance Fitness Assessment & Exercise Prescription, 3rd Edition, The Cooper Institute for Aerobics Research, Dallas TX, 1998.
- [19] 陈刚等, 冠心病患者PTCA或支架术后的康复运动训练. 中国康复医学杂志, 1998(04): 第3-5页.
- [20]. 冠心病康复与二级预防中国专家共识
- [21]. 唐海沁等, 冠心病血运重建患者运动康复疗效及安全性荟萃分析. 中华心血管病杂志, 2014. 42(4): 第334-340页
- [22]. 崔芳等, 康复训练对冠心病患者介入治疗后的运动耐量的影响. 中华物理医学与康复杂志, 2006(03): 第177-179页.
- [23]. 陈馨儿, 冠心病的康复锻炼方法. 中国康复医学杂志, 1986(05): 第36-37页.
- [24]. . 谢岩与范国颖, 康复运动训练联合心理治疗对冠心病PCI术后患者的影响. 中国循证心血管医学杂志, 2016(02): 第226-228页.
- [25]. . 韩呈武等,有氧康复运动疗法对冠脉成形术后患者血清超氧化物歧化酶活性及泛素水平影响的临床研究.中国康复医学杂志,
- 2013(06): 第564-568页.
- [26]. 李河等,运动疗法对冠心病经皮冠状动脉腔内成形术后患者生活质量的影响.中国临床康复,2004(09):第1601-1603页.
- [27]. 郭兰等,运动心脏康复治疗对冠心病冠脉重建术后患者血管内皮功能的影响.中国康复医学杂志,2002(01):第29-31页.

THANKS FOR YOUR ATTENTION